PAM1014 Introduction to Radiation Physics

"Radioactive Decay"

Objectives

- Nuclides
- Radioactivity
- Radioactive Decay Process
- Half-Life
- Decay Constant

Nuclides

- Species of atoms characterised by:
 - Number of protons
 - Number of neutrons
 - Energy content of the atomic nucleus
 - Two forces acting in opposition:
 - Repulsive Coulomb force between protons
 - Attractive force of subnuclear particles

Nuclear Stability

- Only certain combinations of neutrons and protons in nucleus are stable.
- Line of stability
 - N/Z ≈ 1 for low Z nuclides
 - N/Z ≈ 1.5 for high Z nuclides
- Nuclides with odd number N and Z tend to be unstable!

Radioactivity

- Unstable combinations of N and Z exist – BUT overtime permute to stable nuclei
- Stability achieved by conversion of a N to Z or *vice versa*
 - Accompanied by emission of energy

Radioactive Decay

- Nuclides that decay to a more stable nuclei
 - Radioactive
 - Several Types
- A nuclide may undergo several decays before it becomes stable
 - Decay chain
 - Example: Uranium 238 has 14 successive decays to form a stable Lead 206

Radioactive Decay

- Parent Nuclide:
 - Radionuclide at the beginning of a particular decay
- Daughter Nuclide:
 - Nuclide produced by decay
 - May or may not be stable

Nuclear Transformation

- Most radionuclides decay in one or more of the following ways:
 - Alpha decay (a)
 - Beta-minus emission (β-)
 - Beta-plus (positron) emission (β+)
 - Electron capture
 - Isometric transition

Alpha Decay

- The spontaneous emission of an alpha particle from nucleus
 - Identical to a helium nucleus consisting of 2 protons and 2 neutrons.
- Seen in heavy nuclides (A>150)
- Often followed by gamma and characteristic x-ray emission.

Alpha Particle

- The heaviest and least penetrating form of radiation
- Emitted from atomic nucleus with discrete energies in range 2 10 MeV
- Approximately FOUR times heavier than a proton or neutron.

Alpha Decay

• Described by the following equation

 $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + {}^{4}_{2}He^{2+} + transition energy$

- Alpha particles not typically used in medical imaging
 - Limited range (1 cm / MeV in air and less than 100 μm in tissue)

Beta-Minus (Negatron) Decay

- Radionuclides with excess of neutrons – High N/Z ratio
- Described by the following equation:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}Y + \beta^{-} + \overline{\nu} + energy$$

Beta-Minus (Negatron) Decay

- Decay results in conversion of a neutron into a proton
- Simultaneously ejects
 - a negatively charged beta particle (negatron)
 - An antineutrino
- Increases number of protons by 1 thus turns atom into different element of atomic number Z+1

Beta-Minus (Negatron) Decay

- Beta particle identical to ordinary electron
- Antineutrinos have infinitesimal mass and no charge, so hard to detect
- Beta-minus decay decreases N/Z ratio, therefore the daughter closer to stability

Beta-Plus Decay (Positron Emission)

- Same as beta-minus, driven by nuclear instability
 - This time due to deficiency of neutrons
- Increases the neutron number by 1
- Described by the following equation:

 $^{A}_{Z}X \rightarrow ^{A}_{Z-1}Y + \beta^{+} + \nu + energy$

Beta-Plus Decay (Positron Emission)

- Decay results in conversion of a proton into a neutron
- Simultaneously ejects
 - a positively charged beta particle (Positron)
 - A neutrino
- Decreases number of protons by 1 thus turns atom into different element of atomic number Z-1

Beta-Plus Decay (Positron Emission)

- Increases number of neutrons by 1
- Positron decay increases N/Z ratio
- Medical uses:
 - Positron-emitting radiopharmaceuticals
 - Positron emission tomography (PET)

Radioactive Decay Process Useful for visualising Parent nuclide decays to one or more daughter nuclide. Z-1 Z-1 Z-2 N-2 N-1 N N+1 N+2

Decay Constant

- Radioactive decay is a random process
- Impossible to predict which radioactive atoms in a sample will decay given a moment in time
- Observation of large number of radioactive material, over a period of time allows <u>average</u> rate of decay

Radioactivity

- Rate of Decay
- Measured in becquerel (bq)
- 1 bg = 1 decay per second
- 1 bequerel = amount of material which will produce 1 nuclear decay per second.

Decay Constant

- The relationship between activity (A) and Decay Constant (λ) is

$$A = \lambda N$$

- Where N = number of unstable atoms
- Decay constant is characteristic of each radionuclide

Decay Constant

- SI units of Decay Constant (λ)

 Unit of s⁻¹,
 - Hour-1 or year-1 also used
- The Decay Constant is an indicator of how fast OR slow a material will decay
 - Large λ = sample decays quickly
 - Small λ = sample decays slowly

Physical Half-Life

- Parameter related to decay constant is the Physical Half-Life $(T_{1/2})$
- Definition: Time required for the number of radioactive atoms in a sample to decrease by ONE half

$$N = \frac{N}{2^n}$$

- Where n = number of half lives.

Example

The initial activity of a radionuclide is 1MBq. What is it's half-life if after 6 half-lives have passed?

Physical Half-Life • ²³⁸U (Uranium) : 4.47 x 10⁹ years • ²²⁶Ra (Radium) : 1600 years • ^{99m}Tc (technetium) : 6.4 hours • ¹⁴⁰Xe (Xenon) : 13.6 seconds • ²¹²Po (Polonium) : 299 x 10⁻⁹ secs

Physical Half Life

- Longer the half life, the longer the isotope will continue to emit radiation
- Half Life REMAINS the same, no matter how many atoms present
- The Half Life and Decay Constant of a material are related!

Summary

- Nuclides
- Radioactivity
- Radioactive Decay Process
- Half-Life
- Decay Constant